A Flexible Inexact Restoration Method and Application to Multiobjective Constrained Optimization

نویسندگان

  • L. F. Bueno
  • G. Haeser
  • J. M. Martínez
چکیده

We introduce a new flexible Inexact-Restoration (IR) algorithm and an application to Multiobjective Constrained Optimization Problems (MCOP) under the weighted-sum scalarization approach. In IR methods each iteration has two phases. In the first phase one aims to improve feasibility and, in the second phase, one minimizes a suitable objective function. In the second phase we also impose bounded deterioration of the feasibility obtained in the first phase. Here we combine the basic ideas of the Fischer-Friedlander approach for IR with the use of approximations of the Lagrange multipliers. We present a new option to obtain a range of search directions in the optimization phase and we employ the sharp Lagrangian as merit function. Furthermore, we introduce a flexible way to handle sufficient decrease requirements and an efficient way to deal with the penalty parameter. We show that with the IR framework there is a natural way to explore the structure of the MCOP in both IR phases. Global convergence of the proposed IR method is proved and examples of the numerical behavior of the algorithm are reported.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Flexible Inexact Restoration Method and Application to Optimization with Multiobjective Constraints under Weighted-Sum Scalarization

We introduce a new flexible Inexact-Restoration (IR) algorithm and an application to problems with multiobjective constraints (MOCP) under the weighted-sum scalarization approach. In IR methods each iteration has two phases. In the first phase one aims to improve the feasibility and, in the second phase, one minimizes a suitable objective function. This is done in such a way to ensure bounded d...

متن کامل

An inexact restoration approach to optimization problems with multiobjective constraints under weighted-sum scalarization

We apply a flexible Inexact-Restoration (IR) algorithm to optimization problems with multiobjective constraints under the weighted-sum scalarization approach. In IR methods each iteration has two phases. In the first phase one aims to improve the feasibility and, in the second phase, one minimizes a suitable objective function. We show that with the IR framework there is a natural way to explor...

متن کامل

Multiobjective Imperialist Competitive Evolutionary Algorithm for Solving Nonlinear Constrained Programming Problems

Nonlinear constrained programing problem (NCPP) has been arisen in diverse range of sciences such as portfolio, economic management etc.. In this paper, a multiobjective imperialist competitive evolutionary algorithm for solving NCPP is proposed. Firstly, we transform the NCPP into a biobjective optimization problem. Secondly, in order to improve the diversity of evolution country swarm, and he...

متن کامل

Inexact Restoration for Euler Discretization of Box-Constrained Optimal Control Problems

The Inexact Restoration method for Euler discretization of state and control constrained optimal control problems is studied. Convergence of the discretized (finitedimensional optimization) problem to an approximate solution using the Inexact Restoration method and convergence of the approximate solution to a continuous-time solution of the original problem are established. It is proved that a ...

متن کامل

Assessing the reliability of general-purpose Inexact Restoration methods

Inexact Restoration methods have been proved to be effective to solve constrained optimization problems in which some structure of the feasible set induces a natural way of recovering feasibility from arbitrary infeasible points. Sometimes natural ways of dealing with minimization over tangent approximations of the feasible set are also employed. A recent paper [N. Banihashemi and C. Y. Kaya, I...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014